# Investigation of the EPR Parameters of an Orthorhombic Cu<sup>2+</sup> Center in Cs<sub>2</sub>ZnCl<sub>4</sub> Crystal

Hui-Ning Dong<sup>a,b</sup>, Shao-Yi Wu<sup>b,c</sup>, Xian-Rong Liu<sup>a</sup>, and Wei-Dong Chen<sup>d</sup>

Reprint requests to Dr. H.-N. D.; E-mail:donghn@cqupt.edu.cn

Z. Naturforsch. 60a, 373 – 375 (2005); received February 23, 2005

The electron paramagnetic resonance (EPR) anisotropic g-factors  $g_x$ ,  $g_y$  and  $g_z$  and hyperfine structure constants  $A_x$ ,  $A_y$  and  $A_z$  of  $Cu^{2+}$  in  $Cs_2ZnCl_4$  crystal are theoretically investigated by the method of diagonalizing the full Hamiltonian matrix. The crystal-field parameters are obtained from the crystal structure by the superposition model. The results, agreeing reasonably with the observed values, are discussed.

Key words: Crystal-field Theory; Electron Paramagnetic Resonance; Cu<sup>2+</sup>; Cs<sub>2</sub>ZnCl<sub>4</sub>.

#### 1. Introduction

Cu<sup>2+</sup> enters easily into a number of host lattices, and one gets an idea about various characteristics, such as the ground state of the ion, the type of distortions, delocalization of free electrons and also structural phase transitions. The optical and magnetic characteristics of Cu<sup>2+</sup> coordinated complexes have been studied in [1-6]. The theoretical studies are usually related to Cu<sup>2+</sup> complexes with six coordinated octahedra and axial symmetry. Those of low symmetry and four coordinated complexes are infrequent. For example, the EPR g-factors  $g_x$ ,  $g_y$  and  $g_z$  and the hyperfine structure constants  $A_x$ ,  $A_y$  and  $A_z$  for orthorhombic Cu<sup>2+</sup> centers in Cs<sub>2</sub>ZnCl<sub>4</sub> crystal were reported in 1965 [7]. But up to now no theoretical explanation has been made for these EPR parameters. In this paper, by diagonalizing the full energy matrix, we calculated the EPR anisotropic g-factors  $g_x$ ,  $g_y$  and  $g_z$  and hyperfine structure constants  $A_x$ ,  $A_y$  and  $A_z$  for  $Cu^{2+}$  in  $Cs_2ZnCl_4$ crystal. The crystal-field parameters were obtained by the superposition model. The results are discussed.

### 2. Calculation

The  $Cs_2ZnCl_4$  crystal has orthorhombic symmetry and belongs to the Pnam space group. The host  $Cs^+$ 

ion is coordinated by four nearest-neighbour  $C1^-$  ions. The tetrahedron  $(CsCl_4)^{3-}$  has the  $D_2$  point symmetry. The impurity  $Cu^{2+}$  replaces the  $Cs^+$  site with approximate  $D_2$  point group symmetry [8].

The Hamiltonian of a transition-metal ion in the crystal under an external magnetic field can be written as [6]

$$\hat{H}' = \hat{H}_e + \hat{H}_{CF} + \hat{H}_{SO} + \hat{H}_{Z},\tag{1}$$

where  $\hat{H}_{\rm e}$  is the electron-electron repulsion term,  $\hat{H}_{\rm CF}$  the crystal-field Hamiltonian and  $\hat{H}_{\rm so}$  the spin-orbit coupling interaction. For orthorhombic  $D_2$  symmetry, the crystal-field interaction  $\hat{H}_{\rm CF}$  can be expressed in terms of the irreducible tensor operators  $C_k^q$ :

$$\hat{H}_{CF} = B_{20}C_0^2 + B_{22}(C_2^2 + C_{-2}^2) + B_{40}C_0^4 + B_{42}(C_2^4 + C_{-2}^4) + B_{44}(C_4^4 + C_{-4}^4),$$
 (2)

where  $B_{kq}$  are crystal field parameters.  $\hat{H}_{so}$  can be written as:

$$\hat{H}_{\rm so} = \sum \zeta_{\rm d} \hat{l}_i \hat{s}_i \tag{3}$$

where  $\zeta_d$  is the spin-orbit coupling coefficient for free  $\mathrm{Cu}^{2+}$ ,  $\zeta_d \approx 829~\mathrm{cm}^{-1}$  [9]. The Zeeman interaction  $\hat{H}_z$  can be written as  $\hat{H}_z = g_J \mu_\beta \hat{H} \hat{J}$ , with their original meanings [9, 10].

 $0932-0784 / 05 / 0500-0373 \$ 06.00 \textcircled{c} 2005 \ Verlag \ der \ Zeitschrift \ für \ Naturforschung, \ Tübingen \cdot http://znaturforsch.com/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/reschung/r$ 

<sup>&</sup>lt;sup>a</sup> Institute of Applied Physics and College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

<sup>&</sup>lt;sup>c</sup> Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

<sup>&</sup>lt;sup>d</sup> Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, P. R. China

By diagonalizing the complete energy matrix, one obtains the energy eigenvectors. For the orthorhombic  $(\text{CuCl}_4)^{2-}$  cluster, the wave functions of ground Kramers doublets can be written as  $|\varepsilon, \pm \frac{1}{2}\rangle$ , which can be obtained by diagonalizing the energy matrix. Then the anisotropic g-factors  $g_x$ ,  $g_y$  and  $g_z$  can be expressed as [10]

$$g_{x} = 2\left\langle \varepsilon, \frac{1}{2} \left| N^{2}L_{x} + g_{e}S_{x} \right| \varepsilon, -\frac{1}{2} \right\rangle,$$

$$g_{y} = 2\left\langle \varepsilon, \frac{1}{2} \left| N^{2}L_{y} + g_{e}S_{y} \right| \varepsilon, -\frac{1}{2} \right\rangle,$$

$$g_{z} = 2\left\langle \varepsilon, \frac{1}{2} \left| N^{2}L_{z} + g_{e}S_{z} \right| \varepsilon, \frac{1}{2} \right\rangle,$$
(4)

where  $g_e \approx 2.0023$  is the free spin g-value. N is the average covalent reduction factor due to the covalency reduction effect. We take it as an adjustable parameter here.  $L_i$  and  $S_i$  (i = x, y, z) are, respectively, the orbital and spin angular momenta.

The hyperfine structure constants  $A_x$ ,  $A_y$  and  $A_z$  are [11, 12]

$$A_{x} = P \left[ -N^{2} \kappa + \frac{2}{7} N^{2} (\alpha^{2} - \beta^{2}) + (g_{x} - g_{e}) \right.$$

$$\left. - \frac{1}{14} \left( \frac{3\alpha + \sqrt{3}\beta}{\alpha - \sqrt{3}\beta} \right) (g_{y} - g_{e}) \right.$$

$$\left. + \frac{\sqrt{3}\beta}{14\alpha} (g_{z} - g_{e}) - \frac{4\sqrt{3}k\alpha\beta}{7} \right],$$

$$A_{y} = P \left[ -N^{2} \kappa + \frac{2}{7} N^{2} (\alpha^{2} - \beta^{2}) + (g_{y} - g_{e}) \right.$$

$$\left. - \frac{1}{14} \left( \frac{3\alpha - \sqrt{3}\beta}{\alpha + \sqrt{3}\beta} \right) (g_{x} - g_{e}) \right.$$

$$\left. - \frac{\sqrt{3}\beta}{14\alpha} (g_{z} - g_{e}) + \frac{4\sqrt{3}k\alpha\beta}{7} \right],$$

$$A_{z} = P \left[ -N^{2} \kappa - \frac{4}{7} N^{2} (\alpha^{2} - \beta^{2}) + (g_{z} - g_{e}) \right.$$

$$\left. + \frac{1}{14} \left( \frac{3\alpha - \sqrt{3}\beta}{\alpha + \sqrt{3}\beta} \right) (g_{x} - g_{e}) \right.$$

$$\left. + \frac{1}{14} \left( \frac{3\alpha + \sqrt{3}\beta}{\alpha - \sqrt{3}\beta} \right) (g_{y} - g_{e}) \right],$$

where  $\kappa$  is the core polarization constant, which is about 0.3 for  $3d^n$  ions in crystals [13]. Here we take

 $\kappa \approx 0.288$ . P is the dipolar hyperfine parameter for  $\mathrm{Cu}^{2+}$  in the crystal,  $P=N^2P_0$  (where  $P_0$  is the free-ion value, i. e.,  $P_0\approx 388\times 10^{-4}~\mathrm{cm}^{-1}$  for  $^{63}\mathrm{Cu}^{2+}$  and  $P_0\approx 416\times 10^{-4}~\mathrm{cm}^{-1}$  for  $^{65}\mathrm{Cu}^{2+}$  [13]).  $\alpha$  and  $\beta$  are mixing coefficients for the  $|x^2-y^2\rangle$  and  $|3z^2-r^2\rangle$  orbitals. They can be determined from the normalization condition  $\alpha^2+\beta^2=1$  [11,12].

According to Newman's superposition model [14, 15], the crystal field parameters  $B_{kq}$  in (3) can be expressed as

$$B_{kq} = \sum_{j=1}^{n} \bar{A}_{k}(R_{0})(R_{0}/R_{j})^{t_{k}} K_{k}^{q}(\theta_{j}, \phi_{j}), \tag{6}$$

where  $t_k$  is the power-law exponent and  $\bar{A}_k(R_0)$  is the intrinsic parameter with the reference distance  $R_0$  (here we take  $R_0 \approx 2.399$  Å). Usually, the ratio  $\bar{A}_2(R_0)/\bar{A}_4(R_0)$  is in the range of  $9 \sim 12$  for  $3d^n$  ions in many crystals [15, 16]. We take  $\bar{A}_4(R_0)$  as adjustable parameter and  $\bar{A}_2(R_0) \approx 9\bar{A}_4(R_0)$ .  $t_2 \approx 3$  and  $t_4 \approx 5$  because of the ionic nature of the bonds [15]. The coordination factor  $K_k^q(\theta_j, \phi_j)$  can be obtained from the local structural parameters of the studied system.

As far as we know, no structure data of Cs<sub>2</sub>ZnCl<sub>4</sub> crystal are reported. So we use those of the similar Cs<sub>2</sub>CuCl<sub>4</sub> crystal, which for Cs<sup>+</sup> are [17]

$$R \approx 2.2345 \text{ Å}, \quad \theta \approx 64.4355^{\circ}, \quad \varepsilon \approx -1^{\circ}. \quad (7)$$

Here  $\varepsilon$  is the small departure from the 45° angle. Substituting these parameters into the above formulas and diagonalizing the complete energy matrix, the anisotropic g-factors for  $Cu^{2+}$  and the hyperfine structure constants A for the  $^{63}Cu^{2+}$  and  $^{65}Cu^{2+}$  isotopes in  $Cs_2ZnCl_4$  are obtained. Thus, from the above formulas and parameters, we find that to reach good fits between the calculated and experimental EPR parameters for the  $Cu^{2+}$  center, these parameters are

$$\bar{A}_4(R_0) \approx 467 \text{ cm}^{-1}, \quad N \approx 0.834.$$
 (8)

The comparisons between the calculated and experimental EPR parameters are shown in Table 1.

## 3. Discussion

By diagonalizing the Hamiltonian matrix, we calculated the EPR anisotropic g-factors  $g_x$ ,  $g_y$  and  $g_z$  and hyperfine structure constants  $A_x$ ,  $A_y$  and  $A_z$  for Cu<sup>2+</sup> in Cs<sub>2</sub>ZnCl<sub>4</sub> crystal. From the Table 1 one finds that the calculated EPR parameters  $g_i$  factors and the hyperfine

|           |          |          |          | $^{63}$ Cu <sup>2+</sup> (10 <sup>-4</sup> cm <sup>-1</sup> ) |         | 4 cm <sup>-1</sup> ) | $^{65}$ Cu <sup>2+</sup> (10 <sup>-4</sup> cm <sup>-1</sup> ) |         |         |
|-----------|----------|----------|----------|---------------------------------------------------------------|---------|----------------------|---------------------------------------------------------------|---------|---------|
|           | $g_x$    | $g_y$    | $g_z$    | $ A_x $                                                       | $ A_y $ | $ A_z $              | $ A_x $                                                       | $ A_y $ | $ A_z $ |
| Cal.      | 2.089    | 2.100    | 2.487    | 56.7                                                          | 46.4    | 28.3                 | 60.8                                                          | 50.7    | 30.3    |
| Expt. [7] | 2.083(5) | 2.101(5) | 2.446(5) | 51(5)                                                         | 46(5)   | 25(5)                | _                                                             | -       | _       |

Table 1. EPR *g*-factors and hyperfine structure parameters for Cu<sup>2+</sup> in Cs<sub>2</sub>ZnCl<sub>4</sub> crystal.

structure constants  $A_i$  of ion in Cs<sub>2</sub>ZnCl<sub>4</sub>:Cu<sup>2+</sup> crystal agree reasonably with the observed values.

The structural data are not those of the  $Cs_2ZnCl_4$  host crystal but those of the similar  $Cs_2CuCl_4$  crystal, which would result in some errors of the calculated EPR parameters. Considering that  $Cu^{2+}$  and  $Zn^{2+}$  have the same charges and about the same ion radii ( $r \approx 0.72 \text{ Å for } Cu^{2+}$  and  $r \approx 0.74 \text{ Å for } Zn^{2+}$  [18]), the discrepancy of the EPR parameters originating from the host structural data can be neglected.

On the other hand, because of the difference of the charge and ion radii between the impurity Cu<sup>2+</sup> and host Cs<sup>+</sup> ions, the local structural parameters in the vicinity of Cu<sup>2+</sup> should be different from those of the host Cs<sup>+</sup> ion. Disregarding the charge compensation and the lattice relaxation caused by the substitution of

an impurity for the host ion in crystals may result in some calculating errors. As the calculated EPR parameters are consistent with the observed values, this approximation and the results can be regarded as valid.

Considering that the spin-orbit interaction of ligand  $Cl^-$  ions is far smaller than that of  $Cu^{2+}$  ions, in our calculation, the effects of the ligand spin-orbit coupling coefficient to  $g_i$  and  $A_i$  factors are omitted. The approximate calculation is used by other authors and testified to be reliable [4,5].

## Acknowledgement

This work was supported by the Science Foundation of the Science and Education Committee of Chongqing.

- M. Stefan, S. V. Nistor, D. Schoemaker, and I. Ursu, Sol. Stat. Comm. 127, 695 (2003).
- [2] D. P. Padiyan, C. Muthukrishnan, and R. Murugesan, J. Magn. Mat. 222, 251 (2000).
- [3] P. A. A. Mary and S. Dhanuskodi, Spect. A 58, 1473 (2002).
- [4] W. L. Sun and M. G. Zhao, Chin. Phys. Lett. 4, 295 (1997).
- [5] P. Huang, H. Ping, and M. G. Zhao, J. Phys. Chem. Solids. 64, 523 (2003).
- [6] H. N. Dong, S. Y. Wu, and P. Li, Phys. Status Solidi B 241, 1935 (2004).
- [7] M. Shanoff, J. Chem. Phys. 42, 3383 (1965).
- [8] I. H. Parker, J. Phys. C 6, 1975 (1973).
- [9] J. S. Griffith, The Theory of Transition-Metal Ions. Cambridge University Press, London 1964.

- [10] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions. Oxford University Press, London 1970.
- [11] T. B. Rao and M. Narayana, Phys. Status Solidi B 106, 601 (1981).
- [12] Y. Y. Zhou, Phys. Status Solidi B 142, 229 (1987).
- [13] B. R. McGarvey, J. Phys. Chem. 71, 51 (1967).
- [14] D. J. Newman and B. Ng, Crystal Field Handbook. Cambridge University Press, Cambridge 2000.
- [15] D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).
- [16] A. Edgar, J. Phys. C9, 4303 (1976).
- [17] R. Puget, M. Jannin, R. Perret, L. Godefroy, and G. Godefroy, Ferroelectrics 107, 229 (1990).
- [18] R.C. Weast, CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton 1989, F 187.